Modular interpreters with implicit context propagation

نویسندگان

  • Pablo Inostroza
  • Tijs van der Storm
چکیده

Modular interpreters are a crucial first step towards component-based language development: instead of writing language interpreters from scratch, they can be assembled from reusable, semantic building blocks. Unfortunately, traditional language interpreters can be hard to extend because different language constructs may require different interpreter signatures. For instance, arithmetic interpreters produce a value without any context information, whereas binding constructs require an additional environment. In this paper, we present a practical solution to this problem based on implicit context propagation. By structuring denotational-style interpreters as Object Algebras, base interpreters can be retroactively lifted into new interpreters that have an extended signature. The additional parameters are implicitly propagated behind the scenes, through the evaluation of the base interpreter. Interpreter lifting enables a flexible style of modular and extensible language development. The technique works in mainstream object-oriented languages, does not sacrifice type safety or separate compilation, and can be easily automated, for instance using macros in Scala or dynamic proxies in Java. We illustrate implicit context propagation using a modular definition of Featherweight Java and its extension to support side-effects, and an extensible domain-specific language for state machines. We finally investigate the performance overhead of lifting by running the DeltaBlue benchmark program in Javascript on top of a modular implementation of LambdaJS and a dedicated micro-benchmark. The results show that lifting makes interpreters roughly twice as slow because of additional call overhead. Further research is needed to eliminate this performance penalty. & 2016 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implicit Propagation in Structural Operational Semantics

In contrast to a transition system specification in process algebra, a structural operational semantics (SOS) of a programming language usually involves auxiliary entities: stores, environments, etc. When specifying SOS rules, particular auxiliary entities often need to be propagated unchanged between premises and conclusions. The standard technique is to make such propagation explicit, using v...

متن کامل

Generating Specialized Interpreters for Modular Structural Operational Semantics

Modular Structural Operational Semantics (MSOS) is a variant of Structural Operational Semantics (SOS). It allows language constructs to be specified independently, such that no reformulation of existing rules in an MSOS specification is required when a language is extended with new constructs and features. Introducing the Prolog MSOS tool, we first recall how to synthesize executable interpret...

متن کامل

Implicit Leadership Theories: A Qualitative Study in an Iranian Organization

This research aims at discovering the traits and abilities which characterize ideal leaders in the minds of employees in an Iranian context. After employing the strategy of phenomenology to reach the components of ideal leadership, 15 tenured middle managers and employees possessing decent management knowledge in the context were interviewed and after theme analysis, global, basic, and organizi...

متن کامل

An Approach to Incremental and Modular Context-sensitive Analysis of Logic Programs

Context-sensitive global analysis of large code bases can be expensive, which can be specially problematic in interactive uses of analyzers. However, in practice each development iteration implies small modifications which are often isolated within a few modules, and analysis cost can be reduced by reusing the results of previous analyses. This has been achieved to date on the one hand through ...

متن کامل

DynSem: A DSL for Dynamic Semantics Specification

The formal semantics of a programming language and its implementation are typically separately defined, with the risk of divergence such that properties of the formal semantics are not properties of the implementation. In this paper, we present DynSem, a domain-specific language for the specification of the dynamic semantics of programming languages that aims at supporting both formal reasoning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Languages, Systems & Structures

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2017